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With the success of ipilimumab and promise of programmed death-1 pathway-targeted agents, the field of tumor
immunotherapy is expanding rapidly. Newer targets for clinical development include select members of the tumor
necrosis factor receptor (TNFR) family. Agonist antibodies to these co-stimulatory molecules target both T and B
cells, modulating T-cell activation and enhancing immune responses. In vitro and in vivo preclinical data have
provided the basis for continued development of 4-1BB, OX40, glucocorticoid-induced TNFR-related gene, herpes
virus entry mediator, and CD27 as potential therapies for patients with cancer. In this review, we summarize the
immune response to tumors, consider preclinical and early clinical data on select TNFR family members, discuss
potential translational challenges and suggest possible combination therapies with the aim of inducing durable

Introduction

After nearly a century of skepticism regarding the efficacy
of immunotherapy in cancer, a resurgence has begun that
is driven primarily by the success of ipilimumab [1]. The
immune-mediated mechanism of action and resultant
antitumor activity of ipilimumab lend support to the no-
tion that tumors are under immune surveillance. More-
over, the concept of “immuno-editing” suggests that the
pressure exerted on tumors by the immune system shapes
or “edits” tumor cells, allowing their escape from immune
elimination [2]. Briefly, the immune system is capable of
eliminating malignant cells during initial transformation.
As tumors grow, an “equilibrium” is reached where im-
mune tumor growth is matched by immune-mediated
tumor destruction. Eventually, malignant cells either ac-
cumulate mutations, making them non-immunogenic, or
immunosuppressive pathways become activated, allowing
the tumor to escape immune recognition [2-5]. It now
appears that targeting immunomodulatory mechanisms
can tip the balance from escape back toward elimin-
ation. In addition to ipilimumab and other co-inhibitory
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checkpoints (i.e., programmed death-1 [PD-1]), research
into the stimulation of T cell responses via agonist therap-
ies has opened another therapeutic possibility. This review
will focus on the rationale for targeting co-stimulatory
pathways in T cells, summarize agents in development,
and offer possible treatment strategies using these agents
in combination with other immunotherapies.

Review

The host response to tumors has been well described
[6-9]. However, tumors have developed ways to escape
this response via a number of mechanisms; these have
been extensively reviewed previously [6-8,10]. The accu-
mulation of suppressive cells and an inhibitory cytokine
milieu in and around the tumor can form an immuno-
suppressive environment that prevents successful T cell-
mediated destruction of malignant cells [11]. The goal of
many immunotherapies is to help the immune system
overcome the mechanisms that tumors employ to evade
destruction.

Targeting immune “checkpoint” pathways

Upon initial activation by antigen-presenting cells (APCs),
tumor-specific T cells receive essential co-stimulation
through binding of CD28 to CD80/86 on activated APCs.
However, the CD28-CD80/86 pathway is antagonized by
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cytotoxic T lymphocyte antigen-4 (CTLA-4; CD152), one
of the first co-inhibitory checkpoints that self-limit re-
sponses. CTLA-4 competes with CD28 for CD80/86 bind-
ing and has a much greater affinity than CD28 for CD80;
CTLA-4 signaling decreases the magnitude of early T-cell
activation, expansion, and function [12-14]. Ipilimumab
blocks CTLA-4 antagonism of CD28 and was the first
agent to demonstrate an overall survival benefit for
patients with metastatic melanoma [1,15]. The ability of
CTLA-4 blockade to enhance tumor immunity may be
because most tumor antigens are modified self-antigens
or mutated unique antigens against which T cell cyto-
toxic function is believed to be relatively poor. There-
fore, by releasing this first brake on immune activation,
ipilimumab allows the generation of a more effective
immune response [16].

Subsequent to CTLA-4, PD-1 was also shown to regulate
the immune response. PD-1 interacts with B7-homolog 1
(B7-H1 or programmed death receptor-1 ligand1l [PD-L1])
and B7-DC (PD-L2) on APCs and tumor cells. Ligation of
PD-1 by either of its ligands downregulates T-cell receptor
(TCR) signaling and abrogates stimulatory cytokine pro-
duction [17,18]. Moreover, PD-1 upregulation on effector
T cells identifies T cells with an exhausted phenotype that
cannot maintain polyfunctional cytokine production [19].
Although the evaluation of PD-1/PD-L1-targeted therap-
ies is at an early stage, they are showing promising results.
Evaluation of the anti—-PD-1 antibody nivolumab in more
than 300 patients in a phase I trial, showed antitumor ac-
tivity in patients with non-small cell lung cancer (NSCLC),
renal cell carcinoma (RCC), and melanoma, and an en-
couraging safety profile [20,21]. Combination of nivolu-
mab with ipilimumab has also demonstrated a potentially
synergistic effect in a recent phase I combination study
for patients with advanced melanoma [22]. Phase III
trials in these tumors are ongoing. The anti—PD-1 antibody

Table 1 TNFR-targeted agents in development

Page 2 of 9

CT-011 has shown activity in a small phase I trial of
patients with various hematological malignancies [23].
Data with other anti-PD-1 and anti—PD-L1 antibodies
and fusion proteins are becoming available [24-27].

TNFR superfamily costimulatory molecules

In addition to blocking co-inhibitory pathways, activating
co-stimulatory pathways to potentiate antitumor immune
responses is a promising approach. Members of the tumor
necrosis factor receptor superfamily (TNFRsf) include
several co-stimulatory proteins with key roles in B and
T cell development, survival, immune activation, and
antitumor immune responses [28]. These co-stimulatory
TNERsf members lack death domains, enabling them to
enhance activation and proinflammatory cascades [29],
making them attractive therapeutic targets (Table 1).
Recent clinical success with checkpoint inhibitors has pro-
vided the rationale for investigating agonism of 4-1BB
(CD137), OX40, glucocorticoid-induced TNFR-related
gene (GITR), herpes virus entry mediator (HVEM), and
CD27 in order to extend clinical benefit to more patients.

4-1BB (CD137)

4-1BB is a molecule with profound effects on T-cell pro-
liferation and CD8" T-cell function [30-32]. It is primarily
present on activated but not resting T cells, activated
natural killer (NK) cells, and natural killer T (NKT)
cells. It is expressed constitutively on certain popula-
tions of dendritic cells (DCs) and regulatory T cells
(Tregs) [33-36]; 4-1BB expression is upregulated on
monocytes upon activation [35]. Stimulation of 4-1BB by
either its natural ligand, 4-1BBL, or by agonist antibodies
enhances the activation of various immune cells, including
T cells, DC (upregulation of B7 molecules and immunosti-
mulatory cytokine production), monocytes, and neutro-
phils (proinflammatory cytokine secretion), and induces a

TNF receptor Name Description Sponsor Phase in cancer
molecule patients
4-1BB (CD137) CART19 cells T cells transduced with antibody against CD19 linked to  University of Pennsylvania Il
the intracellular signaling domains of 4-1BB and CD3-zeta and others
Urelumab Fully human anti-CD137 agonist monoclonal antibody Bristol Myers-Squibb |
OXx40 Mouse monoclonal anti-OX40 agonist antibody Providence Health & Il
Services and others
Humanized antibody against OX40 Preclinical
hFclLZOX40L Recombinant human Fc:OX40L fusion protein Providence Portland Medical Preclinical
Center
GITR TRX518 Humanized anti-GITR agonist monoclonal antibody GITR, Inc. |
GITRL RNA GITRL-expressing DCs Duke University |
DC
cD27 CDX-1127 Fully human anti-CD27 agonist monoclonal antibody Celldex Therapeutics |

Abbreviation: DCs Dendritic Cells, GITR Glucocorticoid-Induced TNFR-Related Gene, GITRL GITR Ligand, TNF Tumor-Necrosis Factor, TNFR Tumor-Necrosis

Factor Receptor.
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spectrum of effects on B and NK cells [35,36]. 4-1BB
signaling can co-stimulate T cells in a CD28-independent
manner [37], protect tumor-infiltrating lymphocytes (TILs)
from activation-induced cell death (AICD) via upregu-
lation of antiapoptotic pathways [38,39], and enhance
cytotoxic T lymphocyte (CTL) survival and cytolytic
activity [40].

Preclinical data show that targeting 4-1BB with an agon-
ist antibody can promote tumor control in numerous pre-
clinical models, and is often associated with increased
CTL effector capability [36,41-43]. The effects of pairing
agonist anti—4-1BB antibodies with other therapies have
also been investigated. Anti-4-1BB antibody administered
with adoptive T-cell therapy resulted in survival and re-
sistance to rechallenge in 80% of mice bearing estab-
lished thymomas [44]. Combining anti—4-1BB with an
agonist anti-CD40 plus a blocking antibody against
DR5, a receptor for TRAIL (a strategy termed “trimab”),
had activity against multiple transplanted tumors in
mice [45]. Adding anti—-CTLA-4 further increased the
potency of this approach, resulting in ~80% tumor rejec-
tion of established mammary 4 T1 tumors in mice [46].
Combining CTLA-4 blockade and 4-1BB co-stimulation
with a granulocyte-macrophage colony-stimulating factor
(GM-CSF)—secreting melanoma vaccine greatly improved
tumor eradication and promoted survival compared with
vaccine plus either agent [47]. Combination treatment in-
creased proliferation and tumor infiltration by both CD4*
and CD8" T cells, and intratumor inflammatory cytokine
production. Likewise, a 4-1BBL—expressing RM-1 cell vac-
cine used with CTLA-4 blockade in mice bearing RM-1
prostate tumors improved survival compared with mice
treated with monotherapy [48]. These data suggest that
concurrent manipulation of the CTLA-4 and 4-1BB
signaling pathways merits clinical evaluation.

Other combinations have also been investigated. Kohrt
and colleagues showed human trastuzumab-activated NK
cells had improved cytotoxicity against breast cancer cells
when stimulated with an agonist 4-1BB antibody [49]. Ag-
onistic anti—4-1BB antibodies also had antitumor activity
when given together with radiation therapy in murine
breast and lung cancer models and when combined with
anti—PD-1 plus radiotherapy [50,51]. Finally, targeting 4-
1BB with intratumoral interferon-a therapy or DC-based
vaccination also produced significant antitumor responses
and/or improved survival [52,53].

Against this background, agonist 4-1BB therapy with
urelumab (BMS-663513) was investigated in patients
with melanoma, RCC, and ovarian cancer. Although some
antitumor activity was observed during a phase I trial,
safety concerns halted development [54,55]. Development
has recently restarted using urelumab at a lower dose
in combination with other agents (NCT01471210 and
NCTO01775631, clincaltrials.gov).
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A different approach to utilizing the immune-potentiating
properties of 4-1BB has been explored in the context of
chimeric antigen receptor (CAR)-transduced T cells.
Expressing an antibody with specificity for the B cell
antigen CD19 linked to the intracellular signaling do-
mains of 4-1BB and CD3-{ enhanced the survival and
effector functions provided by transduced T cells di-
rected against tumor cells. T cells with this modified
CAR (termed “CART19” cells) infused into a patient
with refractory chronic lymphocytic leukemia (CLL) in-
duced complete disease remission that was ongoing for
more than 10 months [56]. Clinical studies of CART19
cells in patients with various B cell leukemias and
lymphomas are ongoing (clinicaltrials.gov).

0X40 (CD134)

OX40 (TNR4) [57] is similar to 4-1BB and GITR, and
engagement promotes T-cell activation, survival, prolifera-
tion, and cytokine production [58-62]. OX40 is primarily
expressed on activated CD4" T cells 24—48 hours after ac-
tivation, and on CD8" T cells, neutrophils, dendritic cells,
and Tregs [60,63]. The natural ligand of OX40, OX40 lig-
and (OX40L), is most common on APCs, and is also
found on activated T cells. OX40 expression is induced by
TCR stimulation, but co-stimulation through other mole-
cules, such as CD28, or exposure to certain cytokines can
further upregulate expression [64]. While OX40 has a key
role in the development and function of Tregs, engage-
ment of OX40 with an agonist antibody can also deacti-
vate the suppressive function of Tregs [63,65-69].

OX40 agonism has been investigated in multiple tumor
models. As a monotherapy, it delayed tumor growth
in vivo and promoted the rejection of various tumors
[60,62,70]. OX40-dependent antitumor immunity required
both CD4" and CD8" T cells, and a significant proportion
of treated mice remained tumor-free and resistant to re-
challenge, supporting the notion that OX40 engagement
promotes memory [71]. Combination approaches aimed
at improving the efficacy of OX40 engagement have been
explored. Combinations of anti-OX40 with fractionated
radiotherapy, interleukin (IL)-12 and anti—4-1BB, anti—
CTLA-4 and CpG oligonucleotides, anti-CD25 and anti—
CTLA-4 with adoptive cell transfer, transforming growth
factor (TGF)-p inhibition, or IL-2 improved antitumor
responses, tumor rejection, long-term survival, and/or
resistance to tumor rechallenge in mice bearing various
cancers [64,71-75]. We have shown that combining
anti-OX40 with cyclophosphamide led to the regression
of the poorly immunogenic B16 murine melanoma and
was associated with fewer intratumoral Tregs, leading
to a favorable effector/Treg cell ratio within the tumor
microenvironment [76]. Adoptive transfer of melanoma
specific CD4" T cells together with OX40 and cyclophos-
phamide eliminated even more advanced melanomas. This
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combination triggered cytolytic activity in the transferred
CD4" T cells, a phenomenon largely responsible for the
potency of this combination [76].

In the first-in-human clinical trial, 30 patients with solid
tumors received a murine anti-human OX40 monoclonal
antibody at doses from 0.1 through 2 mg/kg; the max-
imum tolerated dose was not identified, and some patients
had an objective response after one dose [77]. Humanized
OX40 antibodies and a fully human OX40L:IgG fusion
protein have been developed [60,78,79]. Phase II clinical
trials evaluating OX40 agonists with stereotactic radiation
and/or cyclophosphamide in patients with multiple tumor
types are ongoing (NCT01642290, NCT01303705).

GITR (CD357)

GITR is expressed at low levels on resting CD4" and
CD8" T cells, is upregulated after 24-72 hours of stimu-
lation, and remains expressed for several days [80-82]. In
contrast to effector T cells, Tregs constitutively express
GITR. GITR has also been observed on DC, monocytes,
and NK cells. Similar to OX40 and 4-1BB, ligation pro-
vides co-stimulatory signals that enhance T-cell prolifer-
ation and effector function, and protect T cells from
AICD [81,82]. GITR ligand (GITRL) is highly expressed
on activated APCs and endothelial cells (ECs). Interest-
ingly, while the role of GITRL on APCs appears primar-
ily to provide costimulation, it was recently shown that
GITRL/GITR interactions on EC may be important for
triggering leukocyte adhesion and transmigration [83].
Although human and mouse GITR have similar character-
istics, unlike most TNFR family members, murine GITR
exists as a dimer instead of a trimer [84,85]. How this
difference relates to the biological functions of mouse
and human GITR is unknown.

Reports showing GITR ligation can break self-tolerance
and abrogate T-cell suppression by Tregs identify it as a
target for cancer immunotherapy [86,87]. Our laboratory
was the first to demonstrate that an agonist anti-GITR
antibody, the rat monoclonal DTA-1, could protect mice
from B16 tumor rechallenge and that treatment induced
rejection of small, established B16 tumors [88,89]. Stimu-
lation of GITR also cured established sarcomas, induced
long-lasting memory, and had activity in other mouse
models [82,90]. GITRL manipulation has also been ex-
plored. Mice bearing GITRL-expressing tumors had im-
proved CTL effector function and peritumoral injection
of a GITRL vaccine slowed the growth of established
tumors [91].

Multiple mechanisms appear to contribute to the antitu-
mor effects of GITR modulation. We have demonstrated
that DTA-1 administration impaired intratumoral Treg
expression of FoxP3, resulting in a loss of Treg lineage
stability and abrogation of intratumor Treg suppressive
function [92]. This led to a higher effector T cell (Teff):
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Treg ratio and improved antitumor CTL function [88].
Additionally, Cété and colleagues found that DTA-1
treatment enhanced the development of high-avidity
CTL responses to tumor-associated antigens in a mouse
melanoma model [93]. Recent reports show that DTA-1
can cause depletion of intratumoral Tregs through in-
teractions between the antibody and activating FcyRs
on myeloid cells [94]. Because of differences in tumor
models and underlying treatment conditions, it is unclear
if one of these mechanisms is dominant or if all play a role
in GITR agonist immunotherapy. The exact contribution
of each will require further investigation.

GITR agonism (either via DTA-1 or GITRL fusion
protein) has been successfully combined with other im-
munotherapies, including DNA- or DC-based vaccines
[93,95-97]. Response to DTA-1 in mice bearing fibrosar-
coma or colorectal carcinoma improved in combination
with adoptive T-cell transfer or an antagonistic anti—
CTLA-4 antibody [90,98,99]. Pruitt and colleagues saw
improvements in antitumor immunity when a melanoma
DC vaccine was combined with DCs expressing anti—
CTLA-4 and anti-GITR mRNA [100].

While most reports show GITR-GITRL interactions are
co-stimulatory to T cells, data regarding the immune-
stimulating potential of GITR on non—T-cell subsets, par-
ticularly NK cells, are conflicting. Human leukemia cell
expression of GITR-L interferes with NK cell-mediated
immunity through reverse signaling, which causes tumor
production of suppressive cytokines, downregulation of
co-stimulatory molecules, and evasion from immune
detection [101,102]. Nonetheless, in collaboration with
Ludwig Cancer Research, Cancer Research Institute,
and GITR, Inc. (Cambridge, MA, USA), we initiated a
phase I trial (NCT01239134) of the humanized anti-GITR
antibody TRX518 [103]. A trial examining the effects of
GITRL-expressing DCs (with or without DC expressing
anti-CTLA-4) plus a DC tumor vaccine in patients with
melanoma is also ongoing (NCT01216436).

HVEM (CD270)

HVEM, another member of the TNFR superfamily [104],
has multiple binding partners and various downstream
effects that can positively and negatively modulate T-cell
activation [105]. HVEM expression kinetics are the
opposite of 4-1BB, OX40, and GITR: HVEM is highly
expressed on resting T cells but downregulated upon acti-
vation. When cells return to less-activated states, HVEM
expression is restored. There is significant HVEM expres-
sion on naive and memory, but not activated, B cells.
Other immune cells, including Tregs, NK cells, mono-
cytes, and immature DCs, also express HVEM. There are
at least four natural ligands for HVEM: the inhibitory
Ig-related molecules CD160 and B and T lymphocyte
attenuator (BTLA; capable of bidirectional signaling)
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and the stimulatory TNF-related cytokines LIGHT and
lymphotoxin-alpha [106-109]. LIGHT is expressed upon
T and B cell activation and on monocytes and immature
DCs. BTLA is found on various lymphoid and myeloid
cells, with particularly high expression on B cells and
plasmacytoid DCs. CD160, by contrast, is observed only
on subsets of T and NK cells [105]. While binding of
LIGHT or lymphotoxin-a to HVEM triggers T and B
cell stimulation and APC maturation and differentiation,
CD160 or BTLA binding to HVEM on T or B cells has
the reverse effect, inhibiting T and B cell activation.

Studies have explored the potential of the HVEM
pathway as a therapeutic target. Murine P815 mastocy-
toma cells engineered to express the single-chain variable
fragment (scFv) of an anti-HVEM agonistic monoclonal
antibody stimulated proliferation and cytokine production
in co-cultured T cells [110]. Expression of anti-HVEM
scFv in vivo resulted in T-cell-dependent tumor rejection
(in 80% of treated mice) and a lasting memory response.
Combination of the anti-HVEM scFv-expressing tumor
vaccine with anti—4-1BB monoclonal antibody therapy
synergized to induce regression of more established tu-
mors, leading to survival and memory responses not seen
with either agent alone [111]. In melanoma patients,
tumor-specific T cells were found to express BTLA con-
current with HVEM [108,109]. Fourcade and colleagues
tested the significance of this expression, showing that
BTLA blockade enhanced the proliferation and antitumor
activity of melanoma-specific CD8" T cells [109]. Ap-
proaches to mono- or combination therapy are presented
in the review by Pasero and colleagues [105]. However,
manipulating the HVEM signaling pathway(s) provides a
significant challenge, requiring agents that precisely in-
duce HVEM-related immunostimulatory effects or block
HVEM-related immunosuppressive effects.

CcD27
CD27 has a key role in the generation of immunological
memory via effects on T-cell expansion and survival,
and B cell development [112-114]. CD27 is constitutively
expressed on conventional T cells (including populations
of Tregs) and, like other members of the TNFRsf, is up-
regulated upon activation [115]. Expression of CD27 on
human Tregs correlates with FoxP3 expression and sup-
pressive functionality [116,117]. CD27 is also expressed
on subsets of B cells, most strikingly on plasma cells,
for which it is a broadly accepted marker [118]. CD70,
the natural ligand for CD27, is transiently expressed on
activated APCs and T cells [119]. Ligation of CD27 by
CD70 has stimulatory effects on T-cell proliferation, ex-
pansion, and survival dependent upon IL-2 autocrine
signaling [120].

Triggering CD27 signaling in CAR-transduced T cells
can enhance effector function, survival, and improve
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antitumor activity in a xenograft mouse model of ovarian
cancer [121]. Constitutive CD70 expression on tumors or
DCs improved antitumor immunity in murine lymphoma
models, enhancing NK-mediated rejection of class-1 defi-
cient tumor cells via perforin- and IFN-y-dependent
mechanisms [122]. CD70 expression also leads to gener-
ation of memory T-cell response to secondary tumor chal-
lenge. Conversely, intact CD27/CD70 signaling has been
associated with decreased antitumor immune responses
and an increased intratumoral Tregs (potentially due
to improved Treg resistance to apoptosis and increased
IL-2 secretion by effector T cells). Compared with wild-
type mice, tumors in CD27-deficient mice had decreased
vascularization and slower growth [123]. Furthermore,
wild-type mice treated with an anti-CD27 blocking anti-
body had fewer Tregs and slower tumor growth than un-
treated mice. In this setting, Tregs were critical mediators
of CD27-dependent effects on tumor growth. Schurch and
colleagues similarly demonstrated that CD27 triggering by
CD?70 ligation in chronic myelogenous leukemia stem cells
accelerated disease progression and was associated with
activation of the Wnt pathway [124]. Such data complicate
the consideration of CD27 as a target for tumor im-
munotherapy. The effects of CD27 pathway triggering
may depend upon the environment in which the stimu-
lus is delivered—within the tumor microenvironment or
in peripheral lymphoid tissues—as well as length of ex-
posure to stimulating agents.

A fully human monoclonal CD27 agonist antibody, CDX-
1127 (Celldex Therapeutics, Inc. Needham, MA, USA),
is being evaluated in a phase I clinical trial in select
hematological and solid tumors [125]. Preclinical experi-
ments with a mouse homologue showed delayed human
hematological tumor growth in xenograft mouse models
and murine tumor growth in immunocompetent mice
[126]. Again, similar to HVEM, continued clinical devel-
opment of CD27-related agents will require teasing apart
the multiple inhibitory and co-stimulatory mechanisms
that target multiple cell populations, and precise triggering
of certain molecules in select environments to avoid exag-
gerating tumor-induced immunosuppression. Since Tregs
appear to be a critical target of CD27 agonism, perhaps
prior Treg depletion may be appropriate.

Conclusions

The success of cancer immunotherapy with agonist
antibodies may vary according to tumor type, since the
expression of the target molecules can differ across tu-
mors (for example, the expression of HVEM in certain
leukemias and lymphomas). Although a multifactorial
approach to cancer therapy is attractive [127], the po-
tential risk of autoimmune reactions and bystander tis-
sue damage in the setting of immunostimulation should
not be underestimated. The well-documented phase I
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study of the anti-CD28 monoclonal antibody TGN1412,
in which six healthy volunteers suffered massive cyto-
kine release and major organ damage, emphasized the
need for extreme caution in trial design and execution
when investigating immune activators [128]. It should
be noted, however, that CD28 is constitutively expressed
on T cells, whereas most of the TNFRsf members are up-
regulated upon activation. Therefore, targeting TNFRsf
members might have more restricted downstream effects,
including a more defined toxicity profile.

Targeting the co-stimulatory TNFRsf shows promise
for the treatment of cancer. Although there have been
life-threatening side effects with some agonist antibodies,
there is obvious clinical activity, emphasizing the need for
careful titration and dosing. From this perspective, it may
not be necessary to “press on the gas” constantly if agonist
antibodies are administered with a checkpoint blocker
(i.e., anti-PD-1, anti-CTLA-4) to “remove the brake”.

The mechanisms of immune evasion are not the same
for each patient’s tumor (even of the same tumor type)
and as such, monotherapies may not achieve sufficient
potency. Combinatorial approaches, which include target-
ing TNEFRsf, show promise in preclinical studies. Thus,
combination with chemotherapy or irradiation, which can
induce immunogenic cell death and stimulate antitumor
T cells, is a rational. Additionally, combining anti-TNFRsf
antibodies with small molecule inhibitors should be con-
sidered. Although clinical studies of TNFRsf agonists are
at an early stage, careful development may see additional
therapies brought to patients who most need them most.
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