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Abstract

Background: Clinical benefit from checkpoint inhibitors has been associated in a tumor-agnostic manner with two
main tumor traits. The first is tumor antigenicity, which is typically measured by tumor mutation burden,
microsatellite instability (MSI), or Mismatch Repair Deficiency using gene sequence platforms and/or
immunohistochemistry. The second is the presence of a pre-existing adaptive immune response, typically measured
by immunohistochemistry (e.g. single analyte PD-L1 expression) and/or gene expression signatures (e.g. tumor
“inflamed” phenotype). These two traits have been shown to provide independent predictive information. Here we
investigated the potential of using gene expression to predict tumor MSI, thus enabling the measurement of both
tumor antigenicity and the level of tumor inflammation in a single assay, possibly reducing sample requirement,
turn-around time, and overall cost.

Methods: Using The Cancer Genome Atlas RNA-seq datasets with the greatest MSI-H incidence, i.e. those from
colon (n=208), stomach (n=269), and endometrial (n = 241) cancers, we trained an algorithm to predict tumor MS
from under-expression of the mismatch repair genes MLH1, PMS2, MSH2, and MSH6 and from 10 additional genes
with strong pan-cancer associations with tumor hypermutation. The algorithms were validated on the NanoString
nCounter™ platform in independent cohorts of colorectal (n =52), endometrial (n=11), and neuroendocrine (n=4)
tumors pre-characterized using the MMR immunohistochemistry assay.

Results: In the validation cohorts, the algorithm showed high prediction accuracy of tumor MSI status, with
sensitivity of at least 88% attained at thresholds chosen to achieve 100% specificity. Furthermore, MSI status was
compared to the Tumor Inflammation Signature (TIS), an analytically validated diagnostic assay which measures a
suppressed adaptive immune response in the tumor and enriches for response to immune checkpoint blockade.
TIS score was largely independent of MSI status, suggesting that measuring both parameters may identify more
patients that would respond to immune checkpoint blockade than either assay alone.

Conclusions: Development of a gene expression signature of MSI status raises the possibility of a combined
diagnostic assay on a single platform which measures both tumor antigenicity and presence of a suppressed
adaptive immune response. Such an assay would have significant advantages over multi-platform assays for both
ease of use and turnaround time and could lead to a diagnostic test with improved clinical performance.
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Background

The clinical benefit of checkpoint inhibitors varies
widely between patients and only a small subset experi-
ence durable disease remission upon treatment. Re-
sponse to checkpoint inhibition has been shown to
associate with two main biological axes: tumor antige-
nicity, typically measured by tumor mutation burden [1]
or microsatellite instability (MSI) [2, 3] using sequencing
platforms or qPCR, and the presence of an adaptive
anti-tumor immune response, typically measured by
gene expression signatures of tumor inflammation [4, 5]
or by immunohistochemistry [6]. Because tumor antige-
nicity and the magnitude of the adaptive immune re-
sponse in the tumor microenvironment are only weakly
correlated [7], more accurate prediction of immunother-
apy response should be possible by measuring and inte-
grating both variables together. However, in a clinical
setting, performing multiple assays using different plat-
forms is often impractical due to increased tissue re-
quirement, turn-around time, and cost. Here we
investigate the ability of gene expression to predict
tumor MSI, enabling measurement of tumor antigenicity
and tumor inflammation in a single assay.

DNA mismatch repair deficiency (MMRd) has been
observed in most cancer types in The Cancer Genome
Atlas (TCGA), and occurs in more than 5% of adrenal,
rectal, colon, stomach, and endometrial tumors [8]. Tu-
mors with this phenotype develop both point and frame-
shift mutations at an increased rate and are often
described as “hypermutated”. The failure of mismatch
repair (MMR) to correct replication errors at short re-
peated DNA sequences can lead to the phenomenon of
high-level MSI (MSI-H). MSI-H cancers have distinct
clinical behavior, which has led to widespread MSI test-
ing in cancers where MSI-H is common. In colorectal
cancer, the MSI-H phenotype demonstrates association
with proximal tumor localization, a dense local lympho-
cyte infiltration, and a low frequency of distant organ
metastasis [9]. Moreover, MSI-H colorectal cancers have
a better prognosis than their microsatellite-stable (MSS)
counterparts [10]. Despite this, diminished responsive-
ness of MSI-H colorectal cancer patients towards
chemotherapy has been shown in several studies, per-
haps as a result of the elevated mutation rate more fre-
quently giving rise to chemotherapy resistant clones
[11]. In the era of immunotherapy, MMRd has gained
greater relevance as a cause of hypermutation potentiat-
ing anti-tumor immune responses which may be en-
hanced by checkpoint inhibition [3]. Importantly, the
frame-shift mutations that accrue in MMRd tumors can
cause greater immunogenicity by leading to a shift in the
protein coding sequence of the entire transcript down-
stream of the mutation site, whereas point mutations
only create a potential neoantigen at the site of the
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mutation [12]. Thus, it is hypothesized that the high
pan-cancer clinical efficacy of checkpoint inhibitors in
MMRd tumors may arise more from their high rate of
frameshift mutations than from their total tumor muta-
tion burden.

MMRd often arises from loss of protein expression of
at least 1 of 4 genes essential for MMR: MLH1, MSH2,
MSHS6, and PMS2. Lost expression of these proteins can
arise either from acquired somatic mutations [13] or
from germline mutations associated with Lynch syn-
drome [14]. In tumors with intact sequences for these
genes, loss of protein expression can follow loss of
mRNA expression. A common cause of lost mRNA ex-
pression in these genes is the CpG island methylator
phenotype (CIMP), which is associated with widespread
methylation across the genome and frequently silences
DNA repair genes [15-20]. Loss of MMR activity due to
microRNA-induced downregulation of MSH2 has also
been observed in colorectal tumors [21]. MMRd can be
detected by measuring either its cause or its effect. Im-
munohistochemistry (IHC) is used to measure loss of
expression of proteins essential to the MMR machinery,
and PCR and sequencing are used to measure MSI [22],
one embodiment of genomic “scarring” which occurs as
a consequence of MMRd.

The biology underlying MMRd provides two oppor-
tunities for capturing MMRd with gene expression data.
First, loss of expression of MMR genes may be used to
detect cases of MMRA resulting from transcriptional
dysregulation. Second, if it is assumed that MMRd and
CIMP exert broad and consistent influence on the tran-
scriptome, then a data-driven predictor of hypermuta-
tion based on RNA expression patterns may also be
possible. Here we employed both of these approaches in
TCGA colon, endometrial, and stomach datasets to de-
rive two independent predictors of tumor MSI, which
were then combined in a single optimized predictor. We
then evaluated these predictors in independent datasets
collected using the NanoString nCounter gene expres-
sion platform (NanoString Technologies, Inc., Seattle,
Washington, USA). The present study demonstrates the
possibility of measuring both mechanisms of checkpoint
inhibitor sensitivity, anti-tumor immunity and tumor an-
tigenicity, simultaneously using a single gene expression
assay.

Methods

Processing of TCGA datasets

The TCGA colon adenocarcinoma (COAD), stomach
adenocarcinoma (STAD) and uterine carcinoma (UCEC)
datasets were selected for analysis based on the >15%
incidence of MSI-H in these tumor types, making them
the most relevant and best statistically powered TCGA
datasets for our analyses.
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TCGA datasets were downloaded from the Broad
Firehose webpage [23]. RNASeq data were downloaded
in RSEM-normalized format and log2-transformed.
Each tumor’s mutation burden was calculated as the
number of non-synonymous mutations in its whole ex-
ome DNA sequencing data; MSI status was taken ver-
batim from the TCGA source data, which used the
MSI-Mono-Dinucleotide Assay qPCR panel to measure
the length of the microsatellite regions.

MMRd assay in commercial colorectal carcinoma samples
MSI-H and MSS colorectal cancer tumor samples in
formalin-fixed paraffin-embedded (FFPE) blocks were
purchased from iSpecimen (Lexington, Massachusetts,
USA). MMR status was determined by the original clin-
ical source using IHC for MLH1, MSH2, MSH6, and
PMS2. MMR status was confirmed in samples where the
original pathological assessment was discordant with the
gene expression results by independent IHC staining
and pathological review by PhenoPath Laboratories,
PLLC (Seattle, Washington, USA).

MMRd assay in commercial endometrial cancer samples
MMR status in the commercial endometrial cancer sam-
ples (also purchased from iSpecimen) was determined by
IHC performed at PhenoPath Laboratories, PLLC (Seattle,
Washington, USA). Antibody clones used were MSH2
(mouse monoclonal FE11, catalog # M3639; Dako), MSH6
(rabbit monoclonal EP49, catalog # M3646; Dako), MLH1
(mouse monoclonal ES05, catalog # M3640; Dako) and
PMS2 (rabbit monoclonal EP51, catalog # M3647; Dako)
(Agilent Technologies, Inc., Santa Clara, California, USA).
All samples were stained with hematoxylin and eosin to
allow for morphological evaluation. MMR status was
reviewed by a board-certified pathologist and reported as
“no loss of expression” or “loss of expression.”

NanoString assay and normalization

Samples were run using the standard nCounter Gene
Expression assay methodology [24] (NanoString Tech-
nologies, Inc., Seattle, Washington, USA). Total RNA
was extracted from each FFPE tumor sample using the
Qiagen FFPE RNeasy kit (Qiagen, Inc.,, Hilden,
Germany). A total of 100ng of RNA was hybridized
with the PanCancer 10 360™ gene expression panel
(NanoString Technologies, Inc., Seattle, Washington,
USA), which contained the genes used in both the MSI
Predictor algorithm and the Tumor Inflammation Sig-
nature. Downstream processing and data collection
followed the manufacturer’s instructions.

Both NanoString datasets were normalized such that
the mean log2 expression of 10 housekeeping genes
was constant across all samples. All analyses used
log2-transformed data.
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Calculation of MSI algorithms in NanoString data

Platform differences prevented directly applying the
TCGA-trained algorithms to NanoString data. Because
gene expression platforms differ in the efficiency with
which they measure each target sequence, platform ef-
fects can be well-modelled by a constant shift in each
gene’s log-scale normalized expression. Therefore, to
apply the algorithms described in the Results section to
NanoString data, the magnitudes of these platform ef-
fects were estimated for each MMR gene and for the
Hypermutation Predictor score. To preserve the integrity
of this dataset as an unbiased test set for the algorithms,
all the calibration parameters were estimated using un-
supervised methods without reference to the known
MSI calls. The R library Mclust [25] was used to fit a
two-component Gaussian mixture model to each MMR
gene’s log2-transformed, normalized expression and to
the Hypermutation Predictor score. For the MMR genes,
the mean of the higher of the two clusters was the esti-
mate of the mean expression level in non-hypermutated
samples; for the Hypermutation Predictor score, it was
the mean of the lower of the two clusters. Apart from
these mean estimates, all other parameters needed to
produce algorithm scores were calculated from TCGA
data without reference to the validation dataset.

Sequencing

Whole exome sequencing was performed on a subset of
discordant samples via Agilent SureSelect Exome library
preparation with Illumina HiSeq. SNP analysis was per-
formed using the dbSNP database (NCI).

Intended use and reproducible research

The MSI algorithms are intended for research use only
and are not for use in diagnostic procedures. Data and R
code for generating all figures in this paper can be found
in Additional files 1 and 2.

Results

Loss of MMR gene expression predicts tumor MSI and
hypermutation status

Because loss of protein expression for any of the
MMR genes MLH1, MSH2, MSH6, or PMS2 is suffi-
cient to identify the majority of tumors with MSI-H
status, we hypothesized that loss of mRNA expression
for any of these genes would provide a surrogate
measurement of tumor MSI status. Plotting MMR
gene expression against mutation burden and MSI
status revealed the strong association between these 3
phenomena (Fig. 1). Loss of MMR gene expression
was strongly predictive of both MSI-H and hyper-
mutation status and almost never occurred in cancers
without MSI-H and hypermutation status.
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Fig. 1 Expression of tumor mismatch repair genes versus tumor mutation burden in each TCGA dataset. Each column shows data from a single
cancer type, and each row shows data from a single gene. Color denotes tumor microsatellite instability (MSI) status as reported in the TCGA database
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In all 3 tumor types investigated (colon, stomach, and
endometrial), a cluster of hypermutated tumors was visibly
distinct from a primary cluster of samples with a lower mu-
tation rate (Fig. 1). In each dataset, these hypermutated tu-
mors were strongly enriched for MSI-H. Each dataset also
contained a small third cluster of tumors with at least double
the mutation burden of hypermutated tumors. Interestingly,
while these “ultramutated” tumors in the endometrial cohort
were often MSS, TCGA sequencing data confirmed each of
these tumors to have mutations in one of the polymerase
genes POLE or POLDI, consistent with a mechanism in
which defective polymerase leads to widespread errors in
DNA replication [26, 27]. Importantly, the average mutation
burden within a given cluster is not preserved across tumor
types; for example, non-hypermutated (typical) stomach can-
cers have 2 times the mutation rate of non-hypermutated
endometrial cancers.

Loss of expression of the 4 MMR genes is also apparent
within each cancer type (Fig. 1). MLH1 was by far the
most frequently under-expressed of these genes. In
TCGA database, MLH1 expression loss occurred in 16%

of colon cancers, 20% of stomach cancers, and 29% of
endometrial cancers. MLH1 loss on its own was a
sensitive biomarker, detecting two thirds or more of the
hypermutation cases in each of these cancer types. Ex-
pression loss in the other 3 MMR genes detected a small
number of additional hypermutated/MSI-H samples not
captured by MLH1 expression loss: MSH2 expression
loss detected 5 additional MSI-H tumors in these 4
datasets, MSH6 expression loss detected 2, and PMS2
expression loss detected none. These loss of expression
events were highly specific predictors of both tumor
MSI and hypermutation status, occurring almost ex-
clusively within hypermutated and MSI-H tumors.
However, a subset of less than 10% of MSI-H tumors
displayed normal expression levels of these 4 genes
(Table 2), indicating MMR dysfunction arising from a
cause other than loss of mRNA expression in these
cases.

Additional files 3, 4 and 5 display the results of Fig. 1
stratified by histological subtypes. The observations of
Fig. 1 hold across each cancer’s histological subtypes.
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Hypermutated tumors share common transcriptional
patterns in colon, stomach, and endometrial cancers
Approximately one third of the hypermutation or ultra-
mutation events as measured by next-generation sequen-
cing in TCGA (a broader set than MSI-H tumors) cannot
be detected by loss of MMR gene expression. In such
cases, transcriptomic events downstream of MMRd might
enable detection of hypermutation independent of the ex-
pression levels of the classic MMR genes. In cancers
where hypermutation has a common origin in MMRd,
and possibly in CIMP, we hypothesized that hypermutated
tumors would display common transcriptional patterns
across tumor types. To evaluate whether broader expres-
sion patterns could predict tumor MSI and hypermutation
status, we ran univariate linear models testing the associ-
ation of hypermutation status with the expression levels of
each gene in each of the 3 TCGA whole transcriptome
RNA-Seq datasets considered.

Genes with highly significant associations with tumor
hypermutation status were abundant: a Benjamini-Hochberg
false discovery rate (FDR) < 0.05 was achieved by 7800 genes
in colon adenocarcinomas, 9337 genes in stomach adenocar-
cinomas, and 3848 genes in endometrial carcinomas. A
number of these genes behaved similarly across all 3 cancer
types: 420 genes had a FDR < 0.05 and a positive association
with tumor hypermutation status in all 3 datasets, and 672
genes had a FDR<0.05 and a negative association with
tumor hypermutation status in all 3 cancer types (Fig. 2).
Gene sets relating to DNA replication machinery and metab-
olism were highly enriched for positive associations with
hypermutation (Additional file 6). The results demonstrated
that numerous genes display strong differential expression
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with tumor hypermutation status across all cancer types and
suggest that a data-driven predictor of tumor hypermutation
status could prove informative.

Novel gene expression algorithms for predicting MMRd,
Hypermutation, and MSI status

Based on the above observations in the TCGA dataset,
separate gene expression algorithms were trained for pre-
dicting tumor MMR Loss and Hypermutation status, and
then combined into a single “MSI Predictor” algorithm.
The “MMR Loss” algorithm, informed by the results of
Fig. 1, measures loss of tumor expression for the 4 MMR
genes (MLH1, MSH2, MSH6, and PMS2). The “Hyper-
mutation Predictor” algorithm, informed by the results of
Fig. 2, uses 10 genes differentially expressed in hypermu-
tated tumors to predict a tumor’s hypermutation status.
Finally, to maximize predictive value by using all available
information, the MSI Predictor algorithm combines the
MMR Loss and Hypermutation Predictor scores into a
single score designed to predict tumor MSI status. The
derivations and calculations of these algorithms are sum-
marized below and described in detail in Additional file 7.

The MMR loss algorithm for calling tumor MSI status
based on tumor loss of MMR gene expression

An algorithm for predicting tumor MSI status by detect-
ing loss of expression in the four MMR genes MLH1,
MSH?2, MSH6 and PMS2 was developed using the TCGA
datasets for the 3 tumor types known to have relatively
high prevalence of MSI-H status (i.e. colon, endometrial
and gastric cancers). The algorithm is based on the hy-
pothesis that MSI-H status will occur in most instances
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Fig. 2 Gene expression signature of hypermutation status in TCGA dataset. Volcano plots show genes’ associations with hypermutation for colon
adenocarcinoma (COAD), stomach adenocarcinoma (STAD), and uterine corpus endometrial carcinoma (UCEC). Genes with a false discovery rate
(FDR) < 0.05 in COAD are colored orange and blue in all 3 panels based on the direction of their association with hypermutation in COAD. The
genes used by the Hypermutation Predictor algorithm are highlighted in red (positive weights) and purple (negative weights)
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when one or more of the MMR genes suffers severe loss
of expression. It evaluates each gene for expression loss
compared to the normal expression range seen in MMR
proficient tumors, and it reports the magnitude of the
most severe expression loss among the four genes.

The Hypermutation predictor algorithm for calling MSI
status from genes differentially expressed in
hypermutated tumors
Although the MMR Loss algorithm is expected to accur-
ately identify the majority of MSI-H tumors, it is expected
to fail in tumors whose MSI-H results from mutations in
the MMR genes that do not affect transcriptional levels,
or from post-transcriptional regulation of the proteins.
Thus, we developed an independent method for calculat-
ing MSI-H status based on differential gene expression
observed between hypermutated and non-hypermutated
samples in the three TCGA datasets where MSI-H status
is common (Fig. 2). Based on this analysis, ten genes were
selected that had strong differential expression in all three
datasets, as well as large effect sizes in models fit to sub-
sets of the data that excluded ultramutated tumors or
hypermutated tumors without MMR gene expression loss.
Using the 10 selected genes, a linear predictor score
was derived using methods similar to Wright et al. [28].
Table 1 details the selected genes and their weights in
the Hypermutation Predictor score. A detailed descrip-
tion of the derivation and calculation of the Hypermuta-
tion Predictor algorithm is provided in the Additional
file 7: Supplementary Methods.

The MSI predictor algorithm for calling tumor MSI status
from combined information in the MMR loss and
Hypermutation predictor scores

Ultimately, a single procedure was required for calling tu-
mors’ MSI status. The MSI predictor algorithm described
below combines the information in the MMR Loss and

Table 1 Algorithm weights and false discovery rates of the
genes in the Hypermutation Predictor score

Gene Weight COAD FDR STAD FDR UCEC FDR
EPM2AIP1 -0.31218 2.13E-19 1.49E-35 6.80E-24
TTC30A —-0.19894 1.54E-13 5.22E-17 2.59E-07
SMAP1 —-0.1835 7.96E-18 257E-13 0.001251
RNLS —-0.19023 2.23E-14 0.000156 4.52E-18
WNT11 -0.11515 1.52E-08 0.036791 7.02E-06
SEXN1 0.214676 1.22E-15 1.11E-16 0.000229
SREBF1 0.194835 8.58E-11 5.48E-14 8.62E-06
TYMS 0.206972 2.08E-17 2.73E-14 0.001611
EIFSAL1 0.194935 599E-13 2.86E-13 9.06E-05
WDR76 0.188582 4.26E-12 3.80E-09 2.67E-07

Note: COAD colon adenocarcinoma, FDR false discovery rate, STAD stomach
adenocarcinoma, UCEC uterine corpus endometrial carcinoma

Page 6 of 12

Hypermutation Predictor scores into a single score for
predicting MSI status. This algorithm was designed to
have two properties. First, when either the MMR Loss al-
gorithm or the hypermutation algorithm suggests MSI-H
status with high confidence, the other algorithm should
not be allowed to counteract this finding. Second, when
both algorithms suggest MSI-H status, the evidence they
provide should be evaluated jointly to gain additional con-
fidence in an MSI-H call. A detailed description of the
MSI Predictor algorithm is included in Additional file 7.

Figure 3 shows how the 3 algorithms relate to each
other. Despite capturing distinct biological signals, the
MMR Loss and Hypermutation Predictor scores were cor-
related but not redundant. And by combining the evi-
dence from the other two algorithms, the MSI Predictor
score better classified borderline samples. The curved de-
cision boundaries shown in Fig. 3 demonstrate the algo-
rithm’s approach to combining evidence from the MMR
Loss and Hypermutation Predictor algorithms.

Additional files 8, 9 and 10 display the results of Fig. 3
stratified by histological subtypes. The observations of Fig. 3
hold across each cancer’s histological subtypes.

Gene expression algorithms predict tumor MSI status in
TCGA training datasets

We evaluated the ability of the MSI Predictor algorithm
and its 2 component algorithms to predict tumor MSI sta-
tus in TCGA colon adenocarcinoma (COAD), stomach
adenocarcinoma (STAD), and uterine corpus endometrial
carcinoma (UCEC). The MMR Loss and Hypermutation
Predictor algorithms were each on their own accurate pre-
dictors of tumor MSI status, but the MSI Predictor algo-
rithm showed higher accuracy as measured by true
positive rate (TPR) and false positive rate (FPR) (Table 2).

Gene expression algorithms predict tumor hypermutation
status in TCGA training datasets

The gene expression algorithms predicted tumor hyper-
mutation in TCGA datasets almost as well as they pre-
dicted tumor MSI status (Table 3), though TCGA’s
PCR-based MSI assay was a slightly more powerful pre-
dictor of tumor hypermutation status than gene expression.

Validation of tumor MSI predictor algorithm in two
independent sample sets

To validate the algorithms trained in TCGA datasets,
the NanoString nCounter Analysis System (NanoString
Technologies, Inc., Seattle, Washington, USA) was used
to profile two new sample sets for which results of the
MMRd IHC assay were available. One sample set con-
sisted of 25 MMR-proficient and 27 MMRd colorectal
carcinoma samples and the second sample set was 5
MMR-proficient and 10 MMRd endometrial and neuro-
endocrine tumors. The endometrial and neuroendocrine
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samples were combined in a single analysis because of
the limited sample size and because both are hormonally
driven tumors. Additional files 11 and 12 contain rele-
vant expression, immunohistochemistry, qPCR and se-
quencing data from these sample sets.

Replicating the phenomenon seen in TCGA datasets, the
validation datasets revealed loss of expression events in a
majority of tumor MSI-H samples (Additional file 13). In
the endometrial and neuroendocrine samples, expression
losses were only observed for the MLH1 gene. PMS2 gene
expression was not noticeably suppressed in 2 tumors with
mutations in that gene and in 2 tumors with loss of nuclear
PMS2 expression seen by IHC. In the colorectal samples,
frequent MLH1 gene expression loss was observed (69% of
MSI-H tumors), as was a single instance each of MSH2
and PMS?2 loss. Loss of expression events occurred exclu-
sively in MMRd tumors. The MMR Loss score, which mea-
sures the evidence for loss of expression in any of the 4
MMR genes, attained an area under the receiver operating

characteristic (ROC) curve of 0.80 in endometrial/neuroen-
docrine samples and 0.87 in colorectal samples (Fig. 4).

The Hypermutation Predictor score, a linear combination
of 10 genes, retained strong predictive performance in these
independent datasets and outperformed the MMR Loss
score (area under curve [AUC] = 0.902 in endometrial/neu-
roendocrine samples and 0.932 in colorectal samples) (Fig.
4). The MSI Predictor score added predictive power to the
Hypermutation Predictor score. The majority of MMRd
cases were unambiguously detected by the MSI Predictor
score, and the score’s overall predictive power was very high
(AUC =0.940 in endometrial/neuroendocrine samples and
0.938 in colorectal samples).

Association of tumor MSI status with level of anti-tumor
immunity as measured by the tumor inflammation
signature

The Tumor Inflammation Signature (TIS) was developed
and analytically and clinically validated in the context of

Table 2 Performance of gene expression algorithms in predicting microsatellite instability

COAD

STAD UCEC

TPR
MMR Loss score 0.9 (0.76-0.96)
0.74 (0.59-0.85)

0.9 (0.76-0.96)

Hypermutation Predictor score
MSI Predictor score
FPR
026 (02-0.32)
0.17 (0.12-0.23)
021 (0.16-0.28)

MMR loss score
Hypermutation Predictor score

MSI Predictor score

0.92 (0.82-0.96)
0.8 (0.68-0.88)
0.9 (0.8-0.95)

0.94 (0.86-0.98)
0.94 (0.86-0.98)
0.93 (0.84-0.97)

036 (0.3-043)
0.37 (031-043)
0.3 (0.24-0.36)

0.3 (0.24-0.36)
0.23 (0.18-0.29)
0.25 (0.19-0.31)

Note: A p-value threshold of 0.01 was used for all gene expression algorithms. True positive rate (TPR) is the proportion of high-level microsatellite instability (MSI-
H) cases detected by each algorithm. False positive rate (FPR) is the proportion of non-hypermutated cases falsely called hypermutated by the gene expression
algorithms. Numbers in parentheses give 95% confidence intervals calculated by the Wilson method. COAD colon adenocarcinoma, STAD stomach

adenocarcinoma, UCEC uterine corpus endometrial carcinoma
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Table 3 Performance of gene expression algorithms and microsatellite instability in predicting hypermutation
COAD STAD UCEC

TPR
MMR Loss score 0.77 (0.62-0.87)
Hypermutation Predictor score 0.65 (0.5-0.78)
0.79 (0.65-0.89)
(

0.86 (0.73-0.93)

MSI Predictor score

MSI status
FPR

MMR loss score 0.1 (0.06-0.15)
0.02 (0.01-0.05)
0.04 (0.02-0.08)

0.01 (0-0.04)

Hypermutation Predictor score
MSI Predictor score

MSI status

0.8 (0.69-0.88) 0.73 (0.63-0.81)
0.74 (0.63-0.83) 0.83 (0.74-09)

0.79 (0.67-0.87) 0.74 (0.65-0.82)
0.88 (0.78-0.94) 0.74 (0.65-0.82)

0.11 (0.07-0.16) 3 (0.08-0.19)
0.04 (0.02-0.08) 2 (0.08-0.18)
0.03 (0.02-0.07) 0.03 (0.01-0.07)
0 (0-0.03) 0.01 (0-0.05)

Note: A p-value threshold of 0.01 was used for all gene expression algorithms. True positive rate (TPR) is the proportion of hypermutated cases detected by
algorithm scores below a p-value threshold of 0.01 or by a high-level microsatellite instability (MSI-H) call. False positive rate (FPR) is the proportion of non-
hypermutated cases falsely called hypermutated by gene expression algorithms of MSI-H calls. Numbers in parentheses give 95% confidence intervals calculated
by the Wilson method. COAD = colon adenocarcinoma; STAD = stomach adenocarcinoma; UCEC = uterine corpus endometrial carcinoma

single agent pembrolizumab and measures the expres-
sion of 18 genes, reflecting the presence of a peripherally
suppressed adaptive immune response in the tumor
micro-environment [5]. The TIS is largely independent
from tumor mutational burden, suggesting that an inte-
gration of these two measurements can carry improved
predictive value [7]. Figure 5 uses gene expression alone
to compare the genotype variable of tumor MSI status
to the phenotype variable of local anti-tumor immunity,
plotting the MSI Predictor score against the TIS score in
the TCGA COAD, STAD, and UCEC datasets.

Together, the TIS and MSI Predictor scores measured
simultaneously in the same sample identified more pa-
tients likely to benefit from checkpoint inhibition than
either test alone. Across these 3 datasets, only 2 samples
identified as MSI-H by standard techniques were missed
by both the TIS and MSI gene expression score.

Additional files 14, 15 and 16 display the results of
Fig. 5 stratified by histological subtype. The observations
of Fig. 5 hold across each cancer’s histological subtypes.

Discussion

This study demonstrated that gene expression can be
used to identify MSI-H tumors with both high sensitivity
and specificity. This discovery opens the possibility of
using gene expression profiling to identify multiple or-
thogonal biomarkers of checkpoint inhibitor efficacy in a
single assay, thereby improving the ability to identify the
best treatment option for every patient. Indeed, this pos-
sibility was forecasted by the work of Cristescu et al.
[29], who reported the correlation of the TIS measured
on the nCounter platform (which they call GEP) and
tumor mutation burden as measured by whole exome
sequencing to predict response to anti-PD1 therapy. In
this work, we demonstrate the practical advantages to

measuring both anti-tumor immune activity and MSI
status using a single test. Rather than using multiple tis-
sue samples and potentially sending those out to mul-
tiple laboratories for analysis, combining these two
measurements into a single assay allows for conservation
of biological material and simplification of personalized
treatment decisions.

This study has some notable limitations, which need
to be considered for appropriate data interpretation.
First, because the Hypermutation Predictor algorithm
was trained using TCGA samples, its predictive per-
formance in TCGA (Tables 2 and 3), as well as the per-
formance of the MSI Predictor algorithm, may be
over-estimated. In contrast, the MMR Loss algorithm
was developed using a minimal training procedure that
only required estimates of the mean and interquartile
range of each gene in non-hypermutated samples; as
such, this algorithm’s performance in TCGA datasets is
more likely to be representative of what would be ex-
pected in an independent dataset.

Second, one assumption underlying the training of the
algorithms was that the standard deviation (SD) in gene
expression levels for a gene in the TCGA RNAseq data-
set would be the same in NanoString data; however, the
NanoString validation results contradicted this assump-
tion and achieved sub-optimal prediction as a result.
Namely, examining the top row of Fig. 4, it appears that
moving the score contours/ decision boundaries left
would capture more MMRd samples while incurring no
false positives. These suboptimal decision boundaries of
the Hypermutation Predictor score appear to result from
a lower SD in the validation MSS samples than in TCGA
MSS samples. If the Hypermutation Predictor score’s SD
in MSS samples were to be estimated anew in these
datasets, it would shift the score contours/ decision
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boundaries left and thereby achieve even better predic-
tion. Because the MSI Predictor score as implemented
in the independent datasets used the pre-defined SD
sestimates from TCGA datasets, it underutilized the
Hypermutation Predictor score and was potentially un-
necessarily conservative as a result. The reason for the
narrower distribution of Hypermutation Predictor scores
in MSS samples in NanoString data is unclear. It could
result from more precise gene expression measurements

or from some unknown difference in the studies’ sample
preparation methods or clinical populations or could be
a spurious observation resulting from the uncontrolled
datasets.

Unexpectedly, MSI predictor scores were inversely
correlated with TIS in true MSI-H samples. One possible
explanation for this phenomenon is that in inflamed tu-
mors, highly abundant immune cells contribute back-
ground expression of MLH1 and other MSI signature



Danaher et al. Journal for InmunoTherapy of Cancer (2019) 7:15 Page 10 of 12
p
COAD STAD UCEC
201 O : :

o “ | . :

5 :§ 1 ° 1 1

8 i i i

0 157 i Lo *c . !

o) oo o . . ° ! MSI status

- e ° e 8 e &,

9 x o ® * Sl Mss

g 10 too * Soee . ::'; o MSI-H

& & RN Foat e

25 i YL s

_________:1:__.__,__2 ________ ,_.-i'.’t_'_.:_'._ ___________ 0__7:':__.:.__:__
\,-"’:wl.fo ‘ ol ad 23t ‘ Toontea’s't %0, o
of RIS . o 7o RANER:
25 50 75 100 25 50 75 100 25 50 75 10.0
Tumor Inflammation Signature Score

Fig. 5 Relationship between MSI Predictor score and Tumor Inflammation Signature (TIS) in theTCG datasets). Color denotes high-level microsatellite
instability (MSI-H) vs. microsatellite stable (MSS) tumors as reported in the TCGA database. Lines show cutoffs for each assay: the MSI Predictor score
threshold corresponds to a p-value cutoff of 0.01, and the TIS score threshold is set at a level recommended by Danaher et al. 2018 [7]

genes, clouding the otherwise clear signal of the tumor
cells’ mRNA. Importantly, nearly all MSI-H tumors
missed by the MSI gene expression score had high TIS
scores, and therefore these tumors’ potential to respond
to checkpoint inhibitors would be identified based on
that variable alone.

In summary and despite the above limitations, this
work shows the potential for gene expression as a MSI
status assay; however, to translate this observation to the
clinical setting, additional studies will be needed to re-
fine the MSI Predictor score and develop a locked algo-
rithm that can be applied prospectively to a single
sample. These findings should have broad applicability
in gene expression studies of cancer types where MSI
occurs. We propose that tumor antigenicity, as mea-
sured by MSI, and immune response, as measured by in-
flammation status, should together form the foundation
of any analysis of immunotherapy in solid tumors. Be-
cause these variables are non-redundant, they promise
to offer superior prediction together than either can
alone. Responders missed by one of these variables may
often be identified by the other. To more optimally
guide treatment choices, drug efficacy should be evalu-
ated separately in MSI-H/TIS-high, MSI-H/TIS-low,
MSS/T1S-high, and MSS/TIS-low subsets.

Finally, these methods for developing gene signatures
of tumor antigenicity may have utility beyond MMRd.
This first work in the space focuses on MSI-H tumors
because they are accompanied by profound changes in
gene expression and because the clinical utility of
MSI-H detection has been demonstrated by the recent
approval of pembrolizumab and nivolumab in MSI-H tu-
mors with a postmarketing commitment to develop
diagnostic assays. Tumor antigenicity arising from other

sources will likely be reflected in the transcriptome in
different ways. Multiple other DNA damage repair
(DDR) pathways exist and are frequently dysregulated in
tumors, often by gene silencing events such as loss of
heterozygosity or epigenetic silencing [30], rendering
them potentially detectable by gene expression profiling.
For example, a transcriptional signature of homologous
repair deficiency (HRD) has been reported [31], and
HRD has been associated with increased immune infil-
tration and expression of immune checkpoints, but effi-
cacy of immune checkpoint blockade in HRD tumors
has not been established yet (reviewed by Mouw et al.
[32]). In tumor types where antigenicity arises from
variable mutagen exposure rather than intrinsic tumor
biology, the path to a gene expression surrogate meas-
urement is less clear, though still an active area of
investigation.

Multiple gene expression assays that report status of
specific DDR pathways could each be used in combin-
ation with TIS to potentially identify additional patient
populations that may respond to immunotherapy check-
point blockade beyond the indications where MMRd/
MSI is the predominant form of DDR deficiency. Fur-
thermore, assays which characterize DDR and TIS status
simultaneously could be deployed to appropriately select
patients for target combination therapies of DDR target-
ing agents with immune checkpoint blockade in clinical
settings where monotherapy is insufficient. Gene expres-
sion profiling of tumor intrinsic DNA repair pathways in
combination with profiling of immune activity within
the tumor has the potential to further guide the develop-
ment and deployment of immunotherapies to patient
populations most likely to respond and increase their
potential for positive clinical benefit.
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Additional files

Additional file 1: Code and data for training analysis in TCGA data. The
R code and data used in the TCGA analyses are included in this zip file.
Code executes in the directory in which it is placed. (TIFF 10912 kb)

Additional file 2: Code and data for the validation dataset analyses.
The R code and data used in the colorectal and endometrial/
neuroendocrine validation analyses are included in this zip file.
Code executes in the directory in which it is placed. (CSV 2 kb)

Additional file 3: Expression of tumor mismatch repair genes versus
tumor mutation burden across histological subtypes of TCGA COAD
datasets. Each column shows data from a single histological subtype in
TCGA COAD dataset, and each row shows data from a single gene. Color
denotes tumor microsatellite instability (MSI) status. (TIFF 21093 kb)

Additional file 4: Expression of tumor mismatch repair genes versus
tumor mutation burden across histological subtypes of TCGA STAD
dataset. Each column shows data from a single histological subtype in
TCGA STAD dataset, and each row shows data from a single gene. Color
denotes tumor microsatellite instability (MSI) status. (TIFF 29531 kb)

Additional file 5: Expression of tumor mismatch repair genes versus
tumor mutation burden across histological subtypes of TCGA UCEC
dataset. Each column shows data from a single histological subtype in
TCGA UCEC dataset, and each row shows data from a single gene. Color
denotes tumor microsatellite instability (MSI) status. (TIFF 21093 kb)

Additional file 6: Gene set enrichment results. For all KEGG,
Reactome, and Biocarta gene sets, the proportion of genes that are
up- and down-regulated with a FDR < 0.05. (CSV 50 kb)

Additional file 7: Supplementary material regarding algorithm
development and validation. (DOCX 30 kb)

Additional file 8: Mismatch repair (MMR) Loss and Hypermutation
Predictor scores plotted against each other across histological
subtypes in TCGA COAD dataset. Curved lines show the decision
boundaries corresponding, from top-left to bottom-right, to micro-
satellite instability (MSI) Predictor score p-value cutoffs of 0.05, 0.01,
and 0.001. Each panel shows results from a distinct subtype of
TCGA COAD dataset. Color denotes tumor MSI status.

(TIFF 8437 kb)

Additional file 9: Mismatch repair (MMR) Loss and Hypermutation
Predictor scores plotted against each other across histological
subtypes in TCGA STAD dataset. Curved lines show the decision
boundaries corresponding, from top-left to bottom-right, to
microsatellite instability (MSI) Predictor score p-value cutoffs of 0.05,
0.01, and 0.001. Each panel shows results from a distinct subtype of
TCGA STAD dataset. Color denotes tumor MSI status. (TIFF 10912 kb)

Additional file 10: Mismatch repair (MMR) Loss and Hypermutation
Predictor scores plotted against each other across histological
subtypes in TCGA UCEC dataset. Curved lines show the decision
boundaries corresponding, from top-left to bottom-right, to
microsatellite instability (MSI) Predictor score p-value cutoffs of 0.05,
0.01, and 0.001. Each panel shows results from a distinct subtype of
TCGA UCEC dataset. Color denotes tumor MSI status. (TIFF 8230 kb)

Additional file 11: Detailed summary of endometrial and neuroendocrine
tumor samples used in algorithm validation studies. For the samples from
the endometrial/neuroendocrine tumor validation dataset, relevant
measurements from the NanoString platform, from immunohistochemistry,
from gPCR, and from sequencing are provided. (CSV 2 kb)

Additional file 12: Detailed summary of colorectal tumor samples used
in algorithm validation studies. For the samples from the colorectal
tumor validation dataset, relevant measurements from the NanoString
platform, from immunohistochemistry, and from the gPCR MSI assay are
provided. (CSV 3 kb)

Additional file 13: MMR genes vs. MSI-high status in validation datasets.
Normalized expression levels of the MMR genes MLH1, MSH2, MSH6, and
PSM2 are plotted against MSI-high status in the colorectal and endomet-

rial/neuroendocrine validation datasets. Solid green lines show the mean

MMR-proficient expression as estimated using Gaussian mixture models
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without reference to MSI-high status; dashed green lines show the lower
95% quantile of expression in MMR-proficient samples derived from this
mixture model mean and the SD calculated in TCGA. (TIFF 12920 kb)

Additional file 14: Microsatellite instability (MSI) predictor signature plotted
against Tumor Inflammation Signature (T1S) across histological subtypes of
TCGA COAD dataset. Each panel shows a distinct histological subtype of
TCGA COAD dataset. Color denotes high-level microsatellite instability (MSI-H)
vs. microsatellite stable (MSS) tumors as determined by conventional tests.
Lines show cutoffs for each assay: the MSI Predictor score threshold
corresponds to a p-value cutoff of 0.01, and the TIS score threshold is set at a
level recommended by Danaher et al. 2018. (TIFF 8230 kb)

Additional file 15: Microsatellite instability (MSI) predictor signature
plotted against Tumor Inflammation Signature (TIS) across histological
subtypes of TCGA STAD dataset. Each panel shows a distinct histological
subtype of TCGA STAD dataset. Color denotes high-level microsatellite in-
stability (MSI-H) vs. microsatellite stable (MSS) tumors as determined by con-
ventional tests. Lines show cutoffs for each assay: the MSI Predictor score
threshold corresponds to a p-value cutoff of 0.01, and the TIS score thresh-
old is set at a level recommended by Danaher et al. 2018. (TIFF 24700 kb)

Additional file 16: Microsatellite instability (MSI) predictor signature
plotted against Tumor Inflammation Signature (TIS) across histological
subtypes of TCGA UCEC dataset. Each panel shows a distinct
histological subtype of TCGA UCEC dataset. Color denotes high-level
microsatellite instability (MSI-H) vs. microsatellite stable (MSS) tumors
as determined by conventional tests. Lines show cutoffs for each
assay: the MSI Predictor score threshold corresponds to a p-value
cutoff of 0.01, and the TIS score threshold is set at a level
recommended by Danaher et al. 2018. (TIFF 8230 kb)
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AUC: area under curve; CIMP: CpG island methylator phenotype;

COAD: colon adenocarcinoma; DDR: DNA damage repair;

DNA: deoxyribonucleic acid; FFPE: formalin-fixed paraffin-embedded;

FPR: false positive rate; HPS: Hypermutation Predictor score;

HRD: homologous repair deficiency; IHC: immunohistochemistry; MLS: MMR
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